Postsynaptic muscarinic M1 receptors activate prefrontal cortical EEG of C57BL/6J mouse.

نویسندگان

  • Christopher L Douglas
  • Helen A Baghdoyan
  • Ralph Lydic
چکیده

Recent pharmacological studies exploring the functional roles of muscarinic cholinergic receptor (mAChR) subtypes in prefrontal cortex of C57BL/6J (B6) mouse have provided evidence for a presynaptic M2 autoreceptor. The B6 mouse was chosen for these studies because it is a genetically well-characterized model that also provides the genomic background for many genetically modified mice. In addition to increasing ACh release, one functional consequence of pharmacologically blocking the cortical M2 autoreceptor is activation of the contralateral prefrontal cortical EEG. To date, the mechanisms through which M2 autoreceptor antagonism causes cortical EEG activation have not been investigated. The present study tested the hypothesis that, in the B6 mouse, prefrontal cortical ACh activates the contralateral prefrontal EEG via postsynaptic M1 receptors. This hypothesis was tested in 15 mice using in vivo microdialysis delivery of muscarinic antagonists with simultaneous quantification of ACh release, number of 7- to 14-Hz EEG spindles, and fast Fourier transformation analysis of prefrontal EEG. Dialysis delivery of the nonsubtype selective muscarinic antagonist scopolamine (10 nM) significantly (P = 0.01) increased ACh release. Quantitative EEG analysis showed that scopolamine did not alter contralateral prefrontal cortical EEG. To differentiate mAChR subtypes mediating pre- versus postsynaptic responses, additional experiments used muscarinic antagonists with different affinities for the five mAChR subtypes. Microdialysis delivery of 3 nM AF-DX 116, a muscarinic antagonist with relatively high affinity for the M2 and M4 subtypes, significantly (P < 0.01) increased prefrontal cortical ACh release and activated EEG in the contralateral prefrontal cortex. EEG activation was characterized by a significant decrease in number of 7- to 14-Hz EEG spindles (P < 0.0001) and power (Vrms) of EEG slow waves (P < 0.05). Microdialysis delivery of 3 nM AF-DX 116 plus 3 nM pirenzepine, a relatively selective M1 and M4 muscarinic antagonist, also significantly (P < 0.01) increased ACh release but did not decrease the number of EEG spindles and did not change EEG slow waves. The differential EEG and ACh responses to dialysis delivery of the muscarinic antagonists support the conclusion that, in B6 mouse, postsynaptic muscarinic receptors of the M1 subtype are a primary site by which ACh activates the EEG.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prefrontal cortex acetylcholine release, EEG slow waves, and spindles are modulated by M2 autoreceptors in C57BL/6J mouse.

Recent evidence suggests that muscarinic cholinergic receptors of the M2 subtype serve as autoreceptors modulating acetylcholine (ACh) release in prefrontal cortex. The potential contribution of M2 autoreceptors to excitability control of prefrontal cortex has not been investigated. The present study tested the hypothesis that M2 autoreceptors contribute to activation of the cortical electroenc...

متن کامل

M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse.

Muscarinic autoreceptors modulate cholinergic neurotransmission in animals ranging from insects to humans. No previous studies have characterized autoreceptor modulation of acetylcholine (ACh) release in prefrontal cortex of intact mouse. Data obtained from experiments in 45 mice considered ACh as a phenotype and tested the hypothesis that pharmacologically defined M2 receptors modulate ACh rel...

متن کامل

Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors.

The neuromodulator acetylcholine (ACh) shapes neocortical function during sensory perception, motor control, arousal, attention, learning, and memory. Here we investigate the mechanisms by which ACh affects neocortical pyramidal neurons in adult mice. Stimulation of cholinergic axons activated muscarinic and nicotinic ACh receptors on pyramidal neurons in all cortical layers and in multiple cor...

متن کامل

Activation of muscarinic receptors inhibits beta-amyloid peptide-induced signaling in cortical slices.

Deposition of fibrillar aggregates of the beta-amyloid peptide (Abeta) is a key pathologic feature during the early stage of Alzheimer's disease. The initial neuronal responses to Abeta in cortical circuits and the regulation of Abeta-induced signaling remain unclear. In this study, we found that exposure of cortical slices to Abeta(1-42) or Abeta(25-35) induced a marked increase in the activat...

متن کامل

Pii: S0197-4580(01)00250-0

We investigated whether object recognition memory is modulated by estrogen in young (5 month) and aged (24 month) female C57Bl/6J mice, and if cholinergic muscarinic receptors might contribute to this response. Mice that were ovariectomized, or ovariectomized plus estradiol-treated three weeks before behavioral testing or quantitative autoradiography were compared to intact mice. Memory for a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 6  شماره 

صفحات  -

تاریخ انتشار 2002